Veranstaltungen

DFN-Arbeitstreffen

Lokale Netze im DFN

Ansprechpartner: Dr. W. Lehmann-Bauerfeld, Zentrale Projektleitung, Tel. (030) 884299-34

Anmeldungen (über Telefax) bis zum 14. Juni 1985

Präsentation der FTAM-Voruntersuchung durch die DANET GmbH

Auswirkungen des in der internationalen Standardisierung befindlichen Entwurfs zu File Transfer Access and Manipulation auf die 2. DFN-Protokollgeneration.

Ansprechpartner: R. Schroeder und M. Wilhelm, Zentrale Projektleitung, Tel. (030) 884299-30/38

Seminare zur Kommunikations-technologie

Grundlagen der Kommunikations-technologie

Ansprechpartner: Dr. K. Truöl (06151-869311)
4.-8.11.1985, GMD Darmstadt, DM 1250

Nachrichtensysteme – Integration nichtöffentlicher und öffentlicher Dienste

Ansprechpartner: Dr. K. Truöl (06151-869311)
25.-26.11.1985, GMD Darmstadt, DM 500

Dienste und Protokolle in Kommunikationsystemen

– Einführung –

Ansprechpartner: Dr. K. Truöl (06151-869311)
30.8. bis 2.10.1985, GMD Darmstadt, DM 750

Realisierung von offenen Kommunikationsystemen

– Modellierung und formale Spezifikation –

Ansprechpartner: Dr. K. Truöl (06151-869311)
23.-25.9.1985, GMD Darmstadt, DM 750

Realisierung von offenen Kommunikationsystemen

– Implementation and Test –

Ansprechpartner: Dr. K. Truöl (06151-869311)
26.-27.9.1985, GMD Darmstadt, DM 500

Lokale Netze

Ansprechpartner: H. Koch, Institut für Systemtechnik der GMD Darmstadt (06151-861)
21.-23.10.1985, GMD Darmstadt, DM 750

Eine Nutzergruppe: Chemische Analytik

Job-Verbund zwischen Hochschulen

Konzepte zum Betrieb des DFN

Zur Rolle von lokalen Rechnernetzen

Heft 2
Juni 1985 - Jahrgang 2

Herausgeber:
Verein zur Förderung eines Deutschen Forschungsnetzes e.V.
– DFN-Verein –

ISSN 0177-6894
<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwort</td>
</tr>
<tr>
<td>Eine Nutzergruppe stellt sich vor: Chemische Analytik</td>
</tr>
<tr>
<td>Ein Verbundprojekt im Deutschen Forschungsnetz: Jobverbund zwischen Hochschulen in Nordrhein-Westfalen</td>
</tr>
<tr>
<td>DFN-Dienste: Angeschlossene Hochschulen</td>
</tr>
<tr>
<td>Der Verwaltungsrat: Zum Verhältnis DFN zu EARN</td>
</tr>
<tr>
<td>Das Grundprinzip ist Selbststeuerung: Konzepte zum Betrieb des DFN</td>
</tr>
<tr>
<td>Das Message-Handling-System: Kommunikation mit elektronischen Briefen</td>
</tr>
<tr>
<td>Ein Zusammenschluß von LANs und WANs: Zur Rolle von lokalen Rechnernetzen im DFN</td>
</tr>
<tr>
<td>Aus der Arbeit der Zentralen Projektleitung</td>
</tr>
<tr>
<td>Erstes Nutzertreffen des DFN-Vereins</td>
</tr>
<tr>
<td>Gründung einer Europäischen Netz-Vereinigung: European NET-Workshop in Luxemburg</td>
</tr>
<tr>
<td>Bekanntmachung: Programm „Vernetzte Arbeitsplatzrechner im DFN“</td>
</tr>
<tr>
<td>Die Mitglieder des DFN-Vereins</td>
</tr>
<tr>
<td>Ansprechpartner</td>
</tr>
<tr>
<td>Veranstaltungen</td>
</tr>
<tr>
<td>Berichte und Veröffentlichungen</td>
</tr>
</tbody>
</table>

Mit über 500 Teilnehmern aus Wissenschaft, Industrie und Verwaltung war auch die diesjährige Tagung ein bedeutendes Forum für Forscher, Entwickler und Anwender rechnergestützter Kommunikationssysteme im deutschsprachigen Raum.

Obwohl sehr viele Vortragsanmeldungen nicht berücksichtigt werden konnten, ergab sich mit 55 Vorträgen ein so umfangreiches Programm, daß fast durchweg Parallelssitzungen abgehalten werden mußten.

Da allein 10 Vorträge direkt aus der DFN-Initiative kamen, bot die Konferenz den DFN-Projektgruppen eine breite Plattform. Der starke Besuch der einzelnen DFN-Vorträge sowie die angeregten Diskussionen nicht nur im Vortragsauditorium, sondern auch im Rahmen des Programmkomplexes den Sachthemen der DFN-Entwicklung so breiten Raum zu geben, von den Tagungsteilnehmern sehr positiv aufgenommen wurde.

Die Ergebnisse der Karlsruher Tagung zeigen, daß nach schwieriger Startphase DFN-Management und Projektgruppen konsequent und erfolgreich den Weg in die wissenschaftliche Öffentlichkeit gefunden haben.

Prof. Dr. Gerhard Krüger
Präsident der Gesellschaft für Informatik
Datenverarbeitung in der Chemie – Stand und Tendenzen

Systeme mittlerer Leistungsfähigkeit werden in den Laboratorien als Prozessorrechner zur Steuerung, Kontrolle und Datenerfassung verwendet und dienen der Datenauswertung. Wichtige Beispiele sind die physikalischen Großgerätgeräte (im wesentlichen NMR, IR, UV, MS-Spektrometer) oder die gesamte Instrumente der Röntgenstrukturanalyse.

Bei den beschriebenen Spektrometern werden die getrennten Größen in elektrische Signale umgewandelt. Die neuern Geräte erlauben eine weitere Verarbeitung der Signale (nach der Steuerung der Messung) durch einen Rechner. Die Auswertung der Spektren werden bereits in starkem Maße Rechner eingesetzt:

a) IR/Raman: Kraftfeldberechnungen, Einsatz von Datenbanken.

b) NMR: Analyse gekoppelter Spinysteme, Identifizierung von Spektren mit Hilfe von Datenbanken.

c) MS: Künstliche Intelligenzprogramm Dendral zur Analyse der Spektren.

Es ist zu erwarten, daß die Bedeutung von intelligenten Analyseprogrammen in Zukunft zunehmen wird.

Um die Zeit zu sparen, werden in der chemischen Industrie die ersten massenspektrometrischen Daten von der chemischen Industrie ausgewertet. Bei der Datenauswertung / reduktion kommen neben rein numerischen Verfahren zunehmend „Intelligente Systeme“ zum Einsatz, die mittels bestimmter Strategien logische Analysen großer Be stande von Meßdaten durchführen. Zum Beispiel werden aus Spektren (bis zu 10 Megaworten) spektroskopische Parame ter extrahiert und aus ihnen Strukturver...
Die Nutzergruppe „Chemie“

Zur Entwicklung und Erprobung der überregionalen Kommunikation haben sich mehrere Arbeitsgruppen zusammengefunden. Sie bearbeiten verschiedene Forschungsfragen, ihre Gemeinsamkeit liegt in der Nutzung von Instrumenten, chemischen Analytik und dem Interesse für die Zusammenarbeit über das DFN.

Es sind dies:
1. TU Berlin / LN-Stranski-Institut für physikalische Chemie
 Molekülspektroskopie (NMR, IR, VIs)
2. Universität Düsseldorf / Institut für anorganische und analytische Chemie
 Verbesserung von Identifikation und Charakterisierung von Substanzen
3. Universität Bonn / Institut für analytische Chemie
 Verbesserung von Identifikation und Charakterisierung von Substanzen

Die Instrumentelle Analytik

Die Lösung typischer analytischer Fragen verlangt häufig die kombinierte Nutzung von Datenquellen, da als Messgrößen Auswerterechner und Bibliotheken (z.B. Massenspektren) benötigt werden. Die Verbindung dieser Datenquellen erfordert eine neue Systemarchitektur, die durch die Integration von virtuellen Instrumenten ermöglicht wird. Die technischen und organisatorischen Herausforderungen bei der Implementierung solcher Systeme sind erheblich, aber die förderliche Wirkung derartiger Anwendungen ist unbestritten.

Die besondere Herausforderung besteht darin, eine möglichst universelle und flexible Plattform zu schaffen, die es erlaubt, verschiedene Datenquellen zu integrieren und miteinander zu kombinieren.

Die folgenden Aspekte werden dabei berücksichtigt:

1. Messen von Daten/Spektren
2. Datentransformation (z.B. Fouriertransformation)
3. Reduktion von Daten
4. Auswertung der Daten/Spektren
5. Erstellung von Strukturvorhersagen
6. Entwicklung neuer Meß- und Auswerteverfahren

Für die Schritte 1 bis 3 existieren heute in der Regel mehrere intelligente Meßgeräte (mit integriertem Rechner). Die Schritte 4 bis 6 erfordern hingegen eine ganz neue Vorgehensweise.

Die Umsetzung dieser Konzepte erfordert eine intensive Kooperation zwischen den beteiligten Institutionen und eine enge Verzahnung mit den relevanten Datenquellen. Die Herausforderung besteht darin, eine effiziente und flexible Plattform aufzubauen, die es ermöglicht, die Daten von verschiedenen Quellen zu integrieren und miteinander zu kombinieren.

Die Implementierung dieser Konzepte erfordert eine enge Verzahnung mit den relevanten Datenquellen und eine intensive Kooperation zwischen den beteiligten Institutionen. Die Herausforderung besteht darin, eine effiziente und flexible Plattform aufzubauen, die es ermöglicht, die Daten von verschiedenen Quellen zu integrieren und miteinander zu kombinieren.
Transfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.
So weit wie möglich sind dafür die DFN-Dienste Dialog, Dateitransfer und Remote Job Entry einsetzbar.

Derart lassen sich die folgenden typischen Arbeitsabläufe ausführen:
2. Transfer von Fremdprogrammen zur Erstellung der Interpretationsmöglichkeiten im eigenen Labor und Dienstleistungen für externe Partner.
5. Schneller Informationsaustausch über die elektronische „Post“ und Abfragemöglichkeiten über den Stand der Bearbeitung oder Auswertung eigener Proben an Fremdgeräten.

Das Arbeitskonzept der Nutzergruppe

Das Konzept eines chemischen Forschungsbündnisses muß folgendes berücksichtigen:

a) die typische chemische Organisationseinheit umfaßt mehrere Datensat- zationen, die erzeugten Daten (Quellen) oder verarbeiteten Daten (Senken)

b) Die Größe einer Organisationseinheit ist begrenzt (ein sehr kleines Labor mit einem Großrechnergerät, eine Arbeitsgruppe, ein Institut, ein Fachbereich oder eine Universität).

c) Der typische Anwender wird Bedarf für lokale und überregionale Kommunikation haben.

Die Chemie-Dateien sollten nach einheitlichen Regeln strukturiert werden, damit sie allgemein lesbar sind. Es ist auch sinnvoll, daß für die Chemie-Dateien um eine Sprache herausgenommen werden, die die Übertragungskosten niedrig zu halten und die Verwendung von Großrechnernetzwerk zu ermöglichen.

Ein weiteres Problem ist, daß die Instrumente je nach Hersteller mit unterschiedlichen Protokollen ausgerüstet sind. Sie sind

- aufgabenbezogen programmiert
- nur beschränkt oder nicht für „null-tasking“
- meist mit verschiedenen Betriebsystemen ausgestattet.

Es muß deswegen das Ziel des Chemie- kongresses, also Meßinstrumente, Auswertesoftware, Großrechner und Informationsdienste (Datenbanken) in einer bisher nicht besetzten Weise zu kooperieren, und zwar mit einer möglichst einheitlichen „Mensch-instrument-Schnittstelle“.

Die in den übertragenden Daten lassen sich unterteilen in:

- Meßdaten/Spektrten
- Graphikdateien
- Programmdateien
- Spektren, Spektrollparameter und Stoffdaten aus Datenbanken
- Daten zur Steuerung und Kontrolle von Experimenten

Ihre praktische Nutzung erfordert den Dialog zwischen Stationen mit dem Großrechner mit Datenbanken

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.
So weit wie möglich sind dafür die DFN-Dienste Dialog, Dateitransfer und Remote Job Entry einsetzbar.

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.

Der Datentransfer von Meßdaten/Spektrten von Labor zum Großrechner von Labor zu Labor und zurück.
Ein Verbundprojekt im Deutschen Forschungsnetz

Job-Verbund zwischen Hochschulen in Nordrhein-Westfalen

Professor Dr. Jan Koop
Rechenzentrum der Universität Düsseldorf

Auf diese Weise können mit 174 668 (56%) der Studenten an Wissenschaftlichen Hochschulen in NRW sowie 104 615 (70%) der Wissenschaftler Dienste des DFN über ihr zuständiges Hochschulrechenzentrum in Anspruch nehmen.

Spezial-Rechner im Landesverbund

- Der „Regionalrechner“ CD 784/72M der Universität Köln steht für eine Vielzahl von Universitäten und Gesamthochschulen (u. a. Siegen, Wuppertal, Duisburg, Düsseldorf, Bielefeld, Paderborn) und Fachhochschulen mit be-sonderen Rechenzeit-Kontingenten zur Verfügung.
- Das Hochschulbibliothekszentrum in Köln (Siemens 7.748) hat landesweite DV-Aufgaben in Zusammenarbeit mit den lokalen Universitätsbibliotheken auf dem Gebiet der On-Line-Katalogisierung zu erfüllen.
- Die Technische Hochschule Aachen erteilt einen Bildverarbeitungsrechner für eine bundesweite Nutzung.

Zunächst schlossen sich fünf Hochschu- len in Abstimmung mit dem Minister für Wissenschaft und Forschung des Landes NRW (die Universitäten in Bielefeld, Bochum, Duisburg, Düsseldorf und Köln) zur Technische Hochschule Aachen) zu einem gemeinsamen Verbundprogramm im Rahmen des DFN zusammen. Dies ermöglicht die gegenseitige Nutzung der Verarbeitung vorhandenen Kapazitäten, der Spezial- und der Spezial-Software-Systeme der Hochschulen. Dabei sind die Haushalts- und Rechenleistungen der einzelnen Hochschulen nicht zu überbieten.

UV 2000

In dieser Situation wurde eine Verbund-Lösung ausgesucht, die derzeit inhaltlich und technisch ein Verbundsystem ist, das den Anforderungen an eine universitäre Informationsverarbeitung gerecht wird.

Diese Situationen müssen in einem Verbund mit gegenseitig „Job-Austausch“ (gemäß als offene Rechenzeit benannt) integriert werden. Hierbei wird der Be- nutzer ermöglichen, einen Stapeldienstverarbeitungsaufruf (Batch-Job) auf einem entfernten Rechnersystem auszuführen werden, lokal (d.h. in „seinem“ System) zu erstellen und diesen zu dem intendierten Verarbeitungsrechner zu übertragen. Die Resultate der „ent- ferneten Verarbeitung werden auf sein lokales System (oder auf ein drittes) zu- rückübertragen.

Zum Verhältnis von DFN zu EARN

Bei der Gründung des Vereins zur Förderung eines Deutschen Forschungsnetzes kündigte die Firma IBM an, dass es das European Academic Network (EARN) in der Bundesrepublik als einen Vorgänger des Deutschen Forschungsnetzes aufbauen und finanzieren wird.

Leider lassen sich derzeit belastbare Termineaussagen für die IBM-Hostanschluss-Phase (Dienstleistungsanbieter) in den Betriebssystemen VM und MVS nicht machen.

Der DFN-Verein hat auf Hinweis von IBM keine eigene Systementwicklung im MVS-Bereich (u. a. IBM 4/9) begraben. Darüber hinaus gibt es derzeit keine DFN-Entwicklungssysteme verwendbare Entwicklungsdokumente für IBM für einschlägige Produkte, so dass sich auch die Entwicklung der anwendungsbezogenen Dienste für IBM-Systeme verschiebt.

Unter diesen beiden Prämisse soll das Verhältnis zum (deutschen) EARN nach folgenden Richtlinien entwickelt werden:

1. Es wird eingerichtet, das für VM und MVS-Systeme die OSI-Entwicklungen durchgeführt werden, die für die Bereitstellung der DFN-Dienste gemäß Gesamtprojektplan notwendig sind.
2. Es muß geprüft werden, in welcher Weise deutsche EARN-Nutzer als Übergangslösung über RSCS-DFN-Gateways in das DFN eingebunden werden können.
4. DFN-Dienste gemäß Gesamtprojektplan (DFN1) sollen als Ersatz für das rückläufige EARN 1986 bereitstellen. Technische Einzelheiten hierzu sollen der DFN-Nutzergruppe im DFN diskutiert werden.

Bei der Betrachtung von Realisierungs- und Bereitstellungsfragen für DFN-Dienste (DFN1) im IBM- und MVS-Systemen sind folgende Szenarien zu unterscheiden:

I. Für MVS/BS 3000:
 a) OSI 4/5-Entwicklung durch IBM, DFN-eigene Entwicklungen für ONSIS (nur BS 3000), File Transfer und Remote Job Entry (gemeinsam für MVS und BS 3000).
 b) DFN-eigene Entwicklungen von ONSIS (nur BS 3000, T.70, File Transfer und Remote Job Entry (gemeinsam für MVS und BS 3000).

II. Für VM:
 a) DFN-eigene Entwicklungen unter Berücksichtigung eigner Vorlaufentwicklungen aus der Kooperation zwischen dem Wissenschaftszentrum Heidelberg der IBM und der GMD. Wenn SNA-X2,5-Schnittstellen, die von IBM angekündigt wurden, liegen, kann die DFN-Entwicklung kurzfristig angepaßt werden.

Der Verwaltungsrat sieht folgende Vorteile in der Entwicklung der DFN1-Dienste für IBM- und MVS-Systeme:

- Höhere Dienste (z.B. graphische Dienste) sind auf den Entwicklungsaufbau aus, beurteilt, Datenschutzaspkte, Funktionelle Vorteile, Erfahrungsaustausch für die kommenden DFN-Nutzungsformen in DFN2.

Die vier Gesichtspunkte sind nicht genug für die Bestätigung der früheren Verwaltungsratsentscheidung, eingeschlossen IBM-Host-Entwicklungen der DFN1- Dienste voranzutreiben.

Darüber hinaus beschlossen der Verwaltungsrat:

1. Ein RSCS-DFN1-Gateway ist notwen-
dig, um den Zugang zum internationalen UMTNET zu erhalten. Dies schließt ei-
nen Gateway zum EARN ein. Der Ver-
waltungsrat befürwortet eine schnelle Realisierung des Gateways im Interes-
se der deutschen Wissenschaften.

Der Verwaltungsrat sieht allerdings eine terminliche und sorgfältige Bedingung zwischen Gateway und Hostentwicklung. Er teilt in diesem Punkte die Auf-
lassung der IBM. Gateway-Entwick-
lung soll so gesteuert werden, daß die parallele Einführung von DFN1-
Host-Adaptern für IBM-Systeme ge-
fordert wird. Der technische Ausschuß soll Möglichkeiten erörtern, die Mitwir-
kung von IBM bei der Host-Entwick-
lung positiv zu gestalten.

6. Der Verwaltungsrat bestätigte seinen früheren Beschuß, Host-Logi-
ken für MVS- und VM-Systeme zu entwickeln. Er differenzierte dabei seine Haltu-
ng für die drei Dienste MHS, RJE und FT.
 a) Zu MHS besteht genereller Konsens, die Entwicklungen gemeinsam mit IBM voranzutreiben.
 b) Zu FT kann eine Entwicklung gemeinsam mit IBM vorliegen.
 c) Zu RJE werden eigene Entwick-
lungen bevorzugen. Der Verwaltungs-
rat bittet die IBM um Unterstützung der Entwicklung, um möglichstens ausreichende Nachteile zu minimieren.

Das Grundprinzip ist Selbststeuerung

Konzepte zum Betrieb des Deutschen Forschungsnetzes

Beim Deutschen Forschungsnetz werden Produkte der nützlichen Protokollgeneration bereits intensiv genutzt. Noch 1985 wird Software der 1. Protokollgeneration zum Einsatz kommen. Es sind daher rechtzeitige Konzepte für eine reibungslose, nutzerfreundliche, auf die speziellen Bedürfnisse der Nutzer abgestimmte Nutzung des DFN zu entwickeln. Grundprinzip ist dabei die Selbststeuerung des Netzes (nicht genug für die Realisierung der Kommunikationsnetze, für einige Bereiche ih-
res Betriebes und für die Betreuung der Nutzer. Unter diesem Aspekt kann das DFN als die von den Nutzern getragene Selbstverwaltungsorganisation DFN-Netzverein angesehen werden. Ihre Aufgaben sind die Geschäftsführung des Vereins, die Beratung von Nutzern, die Weiterent-
wicklung des Netzes sowie der Betrieb der zentralen Einrichtungen Protokoll-
Testlab, Referenzmaschinen, Informations- system und Gateways.

1. Struktur des DFN

Im Management- und Betriebszusam-
menhang kann das Deutsche For-
schungsnetz aus folgenden verschiede-
nen Blickwinkeln betrachtet und charakte-
risiert werden:

1.1 Dienst-Sicht

Das DFN ist ein Angebot an Kommuni-
Kationsnetze für die Deutsche Wissen-
chaft, welche die Kooperation zwischen Wissenschaftlern unterstützen und för-
den. In einem offenen, heterogenen Netz, das auf den Vermittlungsdiensten der Deutsche Bundespost basiert, werden in enger Zusammenarbeit mit Herstellern und Softwarehäusern Software-Bausteili-
nen für Kommunikationsnetze imple-
mentiert. Voraussetzung ist die Verwen-
dung internationaler Standards und Nor-
mnen für Dienste und Protokolle, wo immer dies technisch möglich ist.

Das DFN ist damit eine Menge von Kommunikationsnetzen, realisiert auf auto-
nomen Rechnerzentren. Es hat kein selbstständiges Leitungsnetz, keine eige-
nen Netzkontrollknoten und keine zentra-
len Netzüberwachung.

1.2 Nutzer-Sicht

Das DFN wird für den Kommunikations-
bedarf seiner Nutzer und Nutzergruppen geschaffen. Nur die Annahme der angebo-
enen Dienste durch die Nutzer kann das DFN mit Leben erfüllen und eine stän-
dige Aktualisierung sinnvoll machen. Die Bildung neuer Nutzergruppen und ihre Heranziehung an neue Möglichkeiten kooperativer Forschung soll gefördert werden. Somit kann das DFN mit der Men-
ge seiner Nutzer gleichgesetzt werden.

1.3 Management-Sicht

Eine Management-Instanz (DFN-Verein) ist nötig für die Realisierung der Kommuni-
kationsnetze, für einige Bereiche ih-
res Betriebes und für die Betreuung der Nutzer. Unter diesem Aspekt kann das DFN als die – von den Nutzern getragene – Selbstverwaltungsorganisation DFN-Netzverein angesehen werden. Ihre Aufgaben sind die Geschäftsführung des Vereins, die Beratung von Nutzern, die Weiterent-
wicklung des Netzes sowie der Betrieb der zentralen Einrichtungen Protokoll-
Testlab, Referenzmaschinen, Informations-
system und Gateways.

2. Betriebs- und Kommunikations-
modelle für das DFN

Das Betriebsmodell für das DFN läßt sich entsprechend der angebotenen Kommuni-
kationsnetze und durch unterschiedliche Teilmodelle beschreiben.

2.1 Bilaterales Kommunikationsmodell

Software für die Kommunikationsdienste (Dialog, File Transfer, Remote Job Entry, Graphik) erreicht über DFN-Netz direkt zum DFN entwickelt. Anschließend ist sie auf den autonomen Rechnern und Rechen-
systemen der Mitgliedsorganisation in-
Kommunikation mit elektronischen Briefen

Das Message-Handling-System

Dr. Peter Kaufmann
DVF-Verein, Zentrale Projektleitung, Berlin

1. Überblick über das CCITT-Modell

Bild 1: Komponente des Directory-Dienstes

Führt die für die administrative Gliederung des MHS ist die Zusammenfassung von Repeaters und User-Agents (UA’s) zu öffentlichen „Administration-Management-Domains“ (ADM’s) und zu „Private-Management-Domains“ (PMD’s) vorgesehen. (s. Bild 2)

2. Der DFN-Message-Dienst

2.1. Auswahl der DFN-MHS-Dienstelemente

Das CCITT-Modell definiert nur die Trans- fer-orientierten Dienstelemente eines Message-Systems, während die lokalen Dienstelemente nicht im Modell berücksichtigt werden. Manches der in Deutschland erarbeitete Konzepte und Nutzenmodelle sind bisher noch nicht in einem Standard definiert worden.

Der DFN-Message-Dienst (DFND) gliedert sich in drei Dienste mit den folgenden Funktionen:

- Der DFN-Verkehrsdienst (DFND-Compo- nent) umfasst alle Dienstelemente, die über den DFN auf Basis von X.400 arbeiten.
- Der DFN-Verkehrsdienst (DFND-MTA) umfasst alle Dienstelemente, die über den DFN auf Basis von X.400 arbeiten.
- Der DFN-Verkehrsdienst (DFND-User) umfasst alle Dienstelemente, die über den DFN auf Basis von X.400 arbeiten.
Ein Zusammenschluß von LANs und WANs

Zur Rolle von lokalen Rechnernetzen im DFN

Dr. Wolfdieter Lehmann-Bauerfeld
DFN Verein, Zentrale Projektleitung, Berlin

Weiterverkehrsnetze (WAN) und Lokale Netze (LAN)

Für die konkrete Realisierung unter den Betriebssystemen VMS (DEC), UNIX, BS 2000 (Siemens) und VM (IBM) laufen zur Zeit die Ausschreibungen. Ein Pilotbetrieb soll Ende 1986 begonnen werden.

Was ist ein LAN?

Ein lokales Netz ist nicht wie das Weiterverkehrsnetz durch spezielle Rechner realisiert, die Datenpakete über mehrere bis zwanzig genannten Verfahren kann ein sendebereiter Teilnehmer auf das Betriebssystem "Kabel" prinzipiell jederzeit zugreifen (Multiple Access - MA), jauchzen aber vorher (Carrier Sense - CS), ob schon eine andere Station dieses al-

Lokale Netze bilden eine neue und wichtige Gruppe im DFN, die an einer regiona- len oder überregionalen Kommunikation teilnehmen soll. Nutzer sowohl der tadi- tionellen, direkt am WAN angekoppelten Nutzer als auch der Endsysteme in LANs sollen über die "höheren" Protokolle ("Host-to-HOST" oder "Host-to-LAN" oder "LAN-to-Servi-ces"). Aber auch wenn Basisdienst, elek- tronischer Postbrief sowie das aufbau- wendsysteme innerhalb eines LAN wie auch nach außen verwendet werden kön- nen, sind die entsprechenden Protokolle im Vorrang und auch dort Änderungen vorzusehen.

Gateways-Rechner

Level-7-Gateways

Ein Mapping-System, welches bis zur An- wendungsschicht im LAN und WAN zu- einem inkompablen Protokoll aufleitend arbeitet, heißt "Level-7-Gateway". Eine Eins-zu-Eins-Aufleitung zwischen einzelnen Protokoll-Elementen ist hier nicht immer möglich. Wenn wir uns einmal den Unterschied zwischen Dienst (WAN) und Dienst (LAN) erlauben, probieren wir die Notwendigkeit einer Anpassungsschicht be- stimmt das gleiche. Ist in einem bestimmten Teil eines LANs eine Dienstleistungsnetze nicht im LAN, aber zwischen am WAN ange- schlossenen Hosts angeboten werden können. Ohne die in HARD/Software des LAN-Herstellers eingeführt, wird man solche Einschränkungen nicht beseitigen können. Auf der anderen Seite können bis zur Zeit 7 vorhandene Inkompabilitäti- ten aber auch beinhaltet, daß ein Dienst der LAN "reichthaller" ist als innerhalb des WAN.

Level-1-Gateway

Im einfachsten Fall wird eine Abbildung auf der untersten Ebene das Gateway-Problem zumindest erledigen lassen, wie die darüberliegenden Protokolle sowohl auf den direkt am WAN wie auch auf den im LAN angeschlossenen Systemen identisch sind. Ein "Level-1-Gateway" imple- mentiert, daß das LAN genauso "funkti- oniert" wie das WAN.

LAN: "Subnetz" oder "verteilter Systeme eines globalen Netzes

Wird im LAN - was meist der Fall ist und von einer echte LAN charakterisiert - auf- grund einer anderen Technik auf den unteren Schichten eine andere Protokolle für das im LAN eingesetzt, muß ein "richtiger" Gateway den Durchgang zwischen beiden Netzwerkparadigmen ermöglichen. Wenn wir auf Schicht 3 oder 4 liegende Lösungen vereint die Struktur einer bestimmten LAN-Technik mit der Übergabe von Implementie- rungen von höheren Diensten auf den Endsystemen. Sind die Rechner eines LANs als Endsysteme auf der Vermitt- lerschicht adressierbar, d.h. können die von X.25 benutzen WAN-Adressen eindeutig auf Systeme im LAN abgebildet werden, betrachten wir das "Subnetz" im LAN, binden es über einen "Level-3- Gateway" an und ermöglichen damit im WAN und LAN eine gemeinsame Nut- zung von U:70.

Wird das LAN für das WAN zu genau ein Endsendeanleiher (mit einer DAXTEX-P-Num- mer) betrachtet, können er auf den Trans- sportschicht die LAN-Endsendeanleihm als "Prozesse" unterschieden werden. Das LAN ist dann als ein "verteilter System" wie über einen "Level-4-Gateway" er- reichbar.

Da innerhalb des DFN keine LAN-Techni- ken verfügbar sind, gibt es der Reduktion von Einbeziehung von LANs im DFN auf die Zugangsproblematik reduziert.

Festes Nutzer- treffen des DFN- Vereins in Berlin

Zu den Nutzergruppen gehörten neben dem DFN-Netz ein wichtiges Bausteine im DFN-Netz, die Verbindung von Februar 84 bis Februar 85 stieg zum Beispiel der PI- leiteinsatz von X:29 an Rechenanlagen von 20 auf 56 (IPD 20/09, FT 11/38, RJE 16/38).

Die Teilnehmer, die an der Diskussion teilnahmen, hoben die Bedeutung der Informationswesen in der Bundesverwaltung hervor. Sie zeigten sich über die Möglichkeit einer Zusammenarbeit mit den Bibliotheken und den Verlagen interessiert. Die Diskussion umfaßte auch die Diskussion von Schaltplan- und Softwarelösungen für den Bereich der Buch- und Zeitschriftenverwaltung.

Die Teilnehmer, die an der Diskussion teilnahmen, hoben die Bedeutung der Informationswesen in der Bundesverwaltung hervor. Sie zeigten sich über die Möglichkeit einer Zusammenarbeit mit den Bibliotheken und den Verlagen interessiert. Die Diskussion umfaßte auch die Diskussion von Schaltplan- und Softwarelösungen für den Bereich der Buch- und Zeitschriftenverwaltung.

Die Teilnehmer, die an der Diskussion teilnahmen, hoben die Bedeutung der Informationswesen in der Bundesverwaltung hervor. Sie zeigten sich über die Möglichkeit einer Zusammenarbeit mit den Bibliotheken und den Verlagen interessiert. Die Diskussion umfaßte auch die Diskussion von Schaltplan- und Softwarelösungen für den Bereich der Buch- und Zeitschriftenverwaltung.
Die Mitglieder des DFN-Vereins

Stand Mai 1985

Der DFN-Verein hat derzeit (Mai 1985) folgende Mitglieder:

Wirtschaftsunternehmen:
- AEG-Telefunken AG, Frankfurt
- Bahlsen-Gruppe, Hannover
- Daimler-Benz AG, Stuttgart
- Deutsche Bank, Frankfurt
- Deutsche Lufthansa AG, Düsseldorf
- Deutsche Post AG, Bonn
- Forst compounds GmbH, Berlin
- Hoechst AG, Frankfurt
- Mannesmann-Rheinhausen AG, Düsseldorf
- Robert Bosch GmbH, Stuttgart
- Veba AG, Erfurt

Technisch-Praktische Bildung:
- Arbeitsgemeinschaft der Lehrer der Berufsschulen, Berlin
- Deutscher Karrenkraftwagen-Verband e.V., Stuttgart
- Deutscher Verband für Industrielle und Handelskammern, Bonn
- Deutsche Bundespost, Bonn
- Deutsche Bundesbahn, Bonn
- Deutsche Bundesfinanzverwaltung, Bonn
- Deutsche Bundesbank, Frankfurt
- Deutsche Bundespost, Berlin
- Deutsche Bundespost, Bonn
- Deutsche Bundespost, Düsseldorf
- Deutsche Bundespost, Hannover
- Deutsche Bundespost, Leipzig
- Deutsche Bundespost, Nürnberg
- Deutsche Bundespost, Stuttgart
- Deutsche Bundespost, Wiesbaden
- Deutsche Bundespost, Berlin
- Deutsche Bundespost, Bonn
- Deutsche Bundespost, Düsseldorf
- Deutsche Bundespost, Hannover
- Deutsche Bundespost, Leipzig
- Deutsche Bundespost, Nürnberg
- Deutsche Bundespost, Stuttgart
- Deutsche Bundespost, Wiesbaden
- Deutsche Bundespost, Berlin
- Deutsche Bundespost, Bonn
- Deutsche Bundespost, Düsseldorf
- Deutsche Bundespost, Hannover
- Deutsche Bundespost, Leipzig
- Deutsche Bundespost, Nürnberg
- Deutsche Bundespost, Stuttgart
- Deutsche Bundespost, Wiesbaden

Universitäts- und universitätsähnlich eingereichte Einrichtungen:
- Universität Bayreuth
- Freie Universität Berlin
- Technische Universität Berlin
- Universität Bielefeld
- Universität Bonn
- Universität Bremen
- Technische Universität Clausthal-Zellerfeld
- Hochschule Darmstadt
- Universität Erlangen-Nürnberg
- Universität Freiburg
- Universität Hamburg
- Technische Universität Hannover
- Universität Leipzig
- Universität Marburg
- Technische Universität München
- Universität Münster
- Universität Stuttgart
- Universität Tübingen
- Universität Würzburg

Bekanntmachung

Programm „Vernetzte Arbeitsplatzrechner im DFN“

Die Konzeption für ein derartiges Programm steht nach den Vorstellungen des DFN-Vereins fest: Es sollen Projekte durchgeführt werden, in denen

- Anwendungen entwickelt werden, die vom Markt nicht abgedeckt sind, d. h. die allerdings spezifisch für den Wissenschaftsbereich sind,
- soweit Kommunikations-technologische Verwendung finden, die DFN-Protokollwelt integriert wird.

Die Förderung der Programms steht in der DFN-Vereins, 44, 1000 Berlin 15, Telefon (030) 88 42 99-20, Telefax (030) 88 42 99-71. E-Mail: info@dfn.de

Betreiber: Dr. W. Lehmann-Bauer, FU Berlin, Direktor des DFN-Vereins.

Technischer Ausschuß

- Prof. Dr. U. Diers, Nixdorf, Paderborn
- W. Franzellini, IBM Deutschland, Stuttgart
- Prof. Dr. G. Hering, TU München
- Prof. Dr. E. Jessen, TU München (Vorsitz)
- Dr. R. Eulau, GMD, Darmstadt
- Dr. D. B. Schlueter, Univ. Kiel
- Dr. R. Veltkam, Siemens AG, München
- Dr. A. Vogel, BMFT Bonn

Geschäftsführung

- Prof. Dr. D. N. Szypperski (Vorsitzender)
- Prof. Dr. E. Jessen (stellv. Vorsitzender)
- GMD, Darmstadt
- TU München

Entwicklungsaufgaben:
- Basis-Dienste, Dialog, Remote Job Entry (RJE) und File Transfer (FT)
- W. Hein, W. Lehmann-Bauer, FU Berlin

Entwicklungsaufgaben:
- Technische und wissenschaftliche Beauftragung
- Dr. H. Ulbrich (stellv. Vorsitzender)
- GMD, Darmstadt
- TU München

Entwicklungsaufgaben:
- Bild-Kommunikationstechnik
- Dr. H. Ulbrich (stellv. Vorsitzender)
- GMD, Darmstadt
- TU München