

Sentinel-2 Semantic Data & Information Cube Austria

DFN Betriebstagung | October 17, 2023 | Berlin, Germany

<u>Martin Sudmanns¹</u>, Hannah Augustin¹, Lucas van der Meer¹, Andrea Baraldi², Dirk Tiede¹

¹Department of Geoinformatics - Z_GIS, Paris Lodron University Salzburg, Austria ²Spatial Services GmbH, Salzburg, Austria

Background

Make TBs of Earth observation (EO) data accessible & allow cloud-based analyses

Ĵ	
ij	
	IJ-

Upscale our **own analysis approach:** semantic EO data cubes

Tackle **new research topics that require big data processing** e.g., around SDGs

Requirements: Access to computing and storage resources

... but we are a small team (4 + students)

Motivation

EO Analytics Infrastructure: support users to transform (geo) data into (geo)information

Scalability

Transferability

New user types without EO/technical expertise

Our approach: Semantic querying of multidimensional Earth observation data

Key components of a semantic EO data cube

2 Data cube technology: **User-defined** areas-ofinterests and time intervals

Images: Every pixel semantically enriched (fully automated, no training samples)

+ additional (open) datasets (e.g. DEM)

High-level semantic querying

Tiede, Dirk; Baraldi, Andrea; Sudmanns, Martin; Belgiu, Mariana; Lang, Stefan (2017): Architecture and prototypical implementation of a semantic querying system for big Earth observation image bases. In European journal of remote sensing 50 (1), pp. 452–463. DOI: 10.1080/22797254.2017.1357432.

Overview

Semantic enrichment

automatic worldwide applicable different granularities

Generic factbase data cube

scalable Docker infrastructure applicationagnostic, generic factbase

Knowledgebase and inference engine

web-based **graphical inference engine** translates semantic models from the **knowledgebase** into data cube queries against the **factbase**

Semantic querying

semantic querying language application specific visual models custom output

SCBIR cloud-free p composite th vegetation

...

loss

Semantic enrichment

Baraldi, A., Humber, M.L., Tiede, D., Lang, S., 2018. GEO-CEOS stage 4 validation of the Satellite Image Automatic Mapper lightweight computer program for ESA Earth observation level 2 product generation – Part 2: Validation. Cogent Geosci. 4, 1–52.

nttps://doi.org/10.1080/23312041.2018.1467254

Spectral categories of SIAM

"high" leaf area index (LAI) vegetation types (LAI values decreasing left to right)				
"medium" LAI vegetation types (LAI values decreasing left to right)				
shrub or herbaceous rangeland				
other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland)				
bare soil or built-up				
deep water, shallow water, turbid water or shadow				
thick cloud and thin cloud over vegetation, or water, or bare soil				
thick smoke plume and thin smoke plume over vegetation, or water, or bare soil				
snow and shadow snow				
shadow				
flame				
unknowns				

spectral categories of SIAM applied to image

Semantic enrichment

SIAM (Satellite Image Automatic Mapper) "multi-spectral colour naming"

Fully automated, based on a physical model

No parameter, no training-samples

near real-time (approx. 2 min. for a Sentinel-2 granule)

Scalable, parallelisable

multi-sensor support (at least TOA calibration)

SIAM spectral categorization

Sentinel-2 scene (Austrian/German border) 27 August 2016

SIAM spectral categorization

96 spectral categories (Austrian/German border) 27 August 2016

semantic Data cube

Augustin, H., Sudmanns, M., Tiede, D., Lang, S., & Baraldi, A. (2019). Semantic Earth observation data cubes. Data, 4(3), 102.

semantic **QUERY**

semantic Model

Vegetation change

Searching for a pattern indicating vegetation loss

Observation time several months up to a year (e.g. march to november)

Observation category sequence:

New image **3,5** every days

in Austria

Generic Web interface: access to different semantic EO data cubes possible

Create, save and share semantic queries in a knowledgebase

Open Source code: https://github.com/zgis/semantique

sen2cube

Knowledgebase

Simple Wate Count

Available models Browse all models Factbase

Spatial Subset

25.

Draw Area of Interest

Or use GeotSON dataset:

Temporal Subset

 Inference Quick preview Start inference All inferences

Graphical User Interface

A., & Tiede, D. (2022). Semantic querying in Earth

Example:

How green is Austria?

Sudmanns, M., Augustin, H., van der Meer, L., Baraldi, A., & Tiede, D. (2021). The Austrian Semantic EO Data Cube Infrastructure. Remote Sensing, 13(23), 4807. https://doi.org/10.3390/rs13234807

Why we need time series analysis of **Historic** data

Sudmanns, M., Augustin, H., van der Meer, L., Baraldi, A., & Tiede, D. (2021). The Austrian Semantic EO Data Cube Infrastructure. Remote Sensing, 13(23), 4807. https://doi.org/10.3390/rs13234807

showcasing

Applications

Clients and Interfaces

Sudmanns, M., Augustin, H., van der Meer, L., Baraldi, A., & Tiede, D. (2021). The Austrian Semantic EO Data Cube Infrastructure. Remote Sensing, 13(23), 4807. https://doi.org/10.3390/rs13234807

- Executing semantic models in the cloud ondemand
- standard JSON API
- Easy integration in existing software/clients

Mobile app

Full ArcGIS Pro Integration

Nature`s Calendar citzen science app

(sen2cli) sen2cli07fa6b00b820b:-\$ sen2cli --help Usage: sen2cli [OPTIONS] COMMAND [ARGS]...

Options

--log_file FILE Write log to this file instead of StdErr. -v, --verbose Verbose log output. Can be added up to three times for even mere verbosity (WANING, INFO, DEBUG). --beln Show this messame and writ.

mands:

inference Display / create / modify inferences session Session related commands like 'logir version Prints program version en2cl13 read2018570805200-5

Command-line interface

Example:

Cloud-Desktop Integation

How the OCRE project supported us ...

- ... access to large amount of cloud resources and direct access to the EO data sets at the EODC (<u>https://eodc.eu</u>)
- ... opening new research questions / topics (national-scale investigation)
- ...upscaling the semantic EO data cube(s)
- … 'in-kind' provision of our semantic EO data cubes to Master & PhD students and project partners

Read more in the OCRE success story https://www.ocre-project.eu/successstory/sentinel-2-semantic-datainformation-cube-austria

Dr. Martin Sudmanns Department of Geoinformatics Paris Lodron University Salzburg E-mail: <u>martin.sudmanns@plus.ac.at</u> E-mail: <u>info@sen2cube.at</u> Web: <u>https://sen2cube.at</u>

The projects (Sen2Cube.at, SIMS, SemantiX) associated to this presentation were funded under the Austrian Space Applications Programme (ASAP). An OCRE EO grant is supporting the EO cloud &

data infrastructure used.

