

bwCampusnetz

Einheitliche Sicherheitskontexte und Verwaltung für WLAN und Ethernet

Matthias Machtolf matthias.machtolf@tik.uni-stuttgart.de 83. DFN Betriebstagung, 2025-10-8

Was ist ein Sicherheitskontext?

- Sicherheitskontext:
 - Gruppe von IT-Systemen
 - mit ähnlichem Schutzbedarf und –Niveau
 - oft mit demselben Verantwortlichen

Abbildung auf Netzebene

Unabhängig von der Netzzugangsart

Implementierung abhängig von Kontext und Rahmenbedingungen

Universität Stuttgart

Zahlen und Fakten

 1829 gegründet, hat sich die frühere Technische Hochschule zu einer forschungsintensiven Universität mit überwiegend ingenieur- und naturwissenschaftlicher Orientierung entwickelt, zu deren besonderem Profil die Vernetzung dieser Fachrichtungen mit den Geistes- und Sozialwissenschaften gehört.

22.000 Studierende an 10 Fakultäten

270 Professoren und Professorinnen,
 3.500 wissenschaftlich Beschäftigte,
 1.800 nichtwiss. Beschäftigte

- 2 Campus-Standorte, 140 Gebäude 350.000 m² Hauptnutzfläche
- HLRS: Tier-1 HPC
- Starke Kooperation mit außer– universitären Forschungs– einrichtungen
- Im Herzen einer der stärksten High-Tech-Regionen Europas

Projekt bwCampusnetz

Zukunftsfähige Konzepte für Campusnetze an Universitäten und Hochschulen

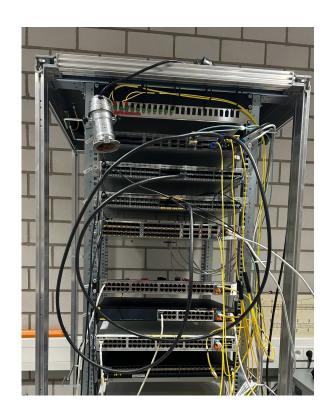
- Gefördertes Projekt
 - Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
- 5 Universitäten
 - KIT
 - Konstanz
 - Mannheim
 - Stuttgart
 - Ulm
- Kontakt: <team@bwcampusnetz.de>

Themenschwerpunkte bwCampusnetz

Moderne Netzarchitektur und Segmentierung

Authentifizierter Netzzugang und nutzerbasierte Sicherheitskontexte

Administration von IPv6-enabled Netzwerken


IT-Grundschutz

Ziele bwCampusnetz

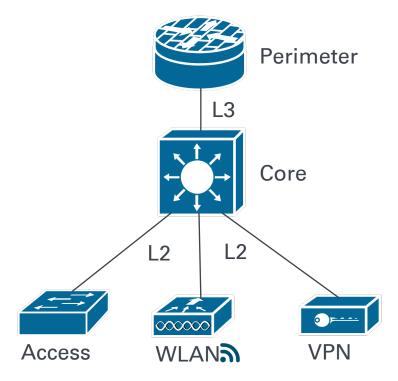
Konzeptpapiere

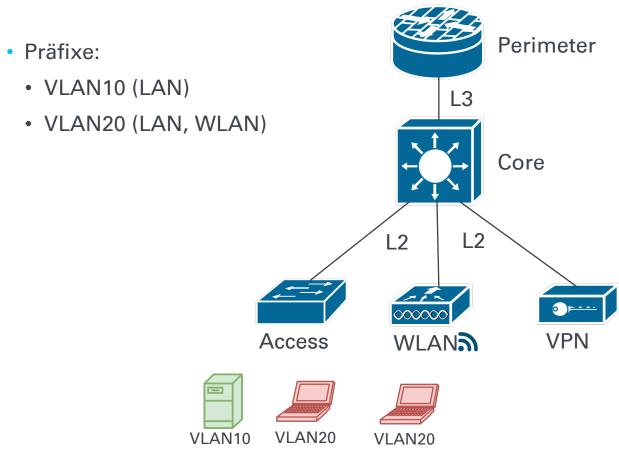
Prototypische Implementierungen

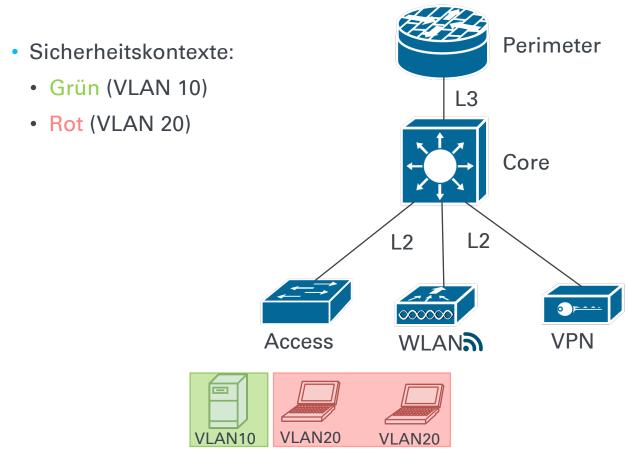
- Informationstransfer
 - → Workshops für Hochschulen und Universitäten

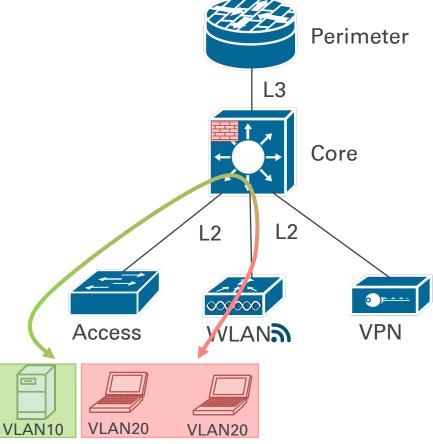
Campusnetze: Bausteine

Netzzugangsarten


- LAN (z.B. Statisches VLAN am Access-Port)
- WLAN (eduroam Netz(e), Geräte PSK, offenes WLAN)
 - → Annahme Tunnel Mode
- VPN

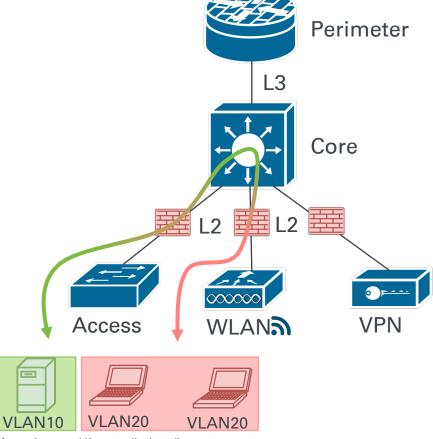



Minimallösung - Collapsed Core


Minimallösung - Collapsed Core

Minimallösung - Collapsed Core

Collapsed Core - (Stateful) Firewall 1

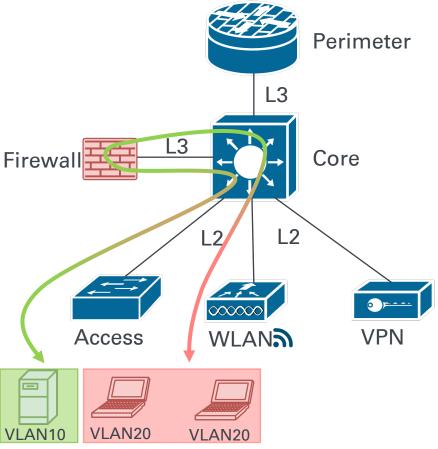

Maßnahme

VLAN

SVI

FW-Gruppe

Collapsed Core - (Stateful) Firewall 2


Maßnahme

VLAN

SVI

FW-Gruppe

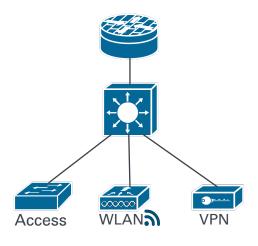
Collapsed Core - (Stateful) Firewall 3

Maßnahme

VLAN

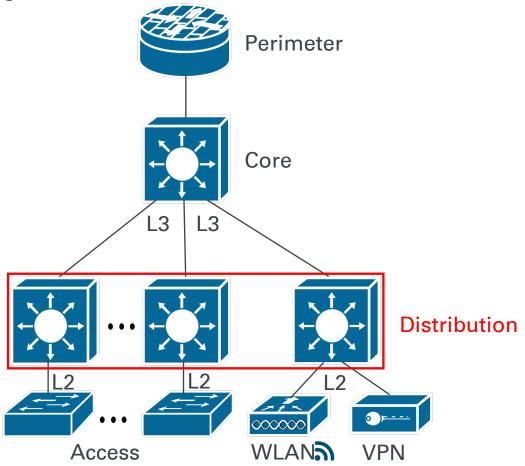
SVI

FW-Gruppe


PBR-ACL

Minimallösung - Collapsed Core

Anzahl Access-Switche überschaubar


Kleiner STP-Baum / einfache Topologie

• Begrenzte Skalierungs- und Redundanzanforderungen

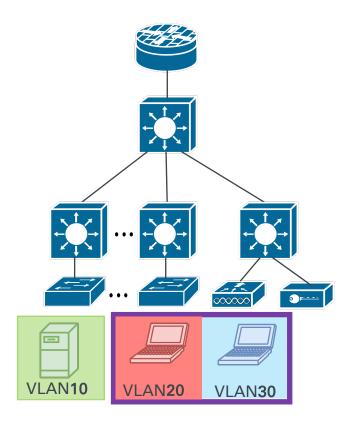
Campusnetze: Bausteine

Three-Tier Architecture

Problem Statement

VLANs sind "ortsgebunden"

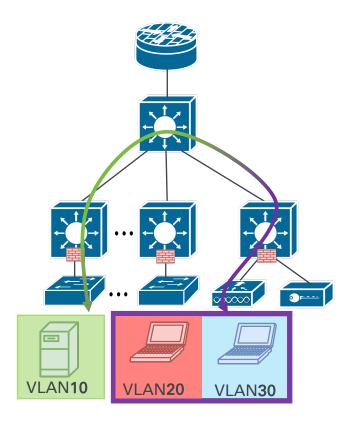
Layer-3 Trennung zwischen LAN und WLAN/VPN


- Access Point als Bridge in VLAN
 - → Sicherheitsrisiko, Interferenzen

- Separates (Kunden-)VLAN für WLAN/VPN
 - → Doppelte Policies, Höherer Betriebsaufwand, (mehr Adressbereiche), ...

Three-Tier Architecture

- Sicherheitskontext Grün:
 - VLAN 10 (LAN)
- Sicherheitskontext Lila:
 - VLAN 20 (LAN)
 - VLAN 30 (WLAN)



Three-Tier Architecture - (Stateful) Firewall 1

- (Stateful) Firewall
 - im Distribution Layer <u>oder</u>
 - zwischen Distribution und Access

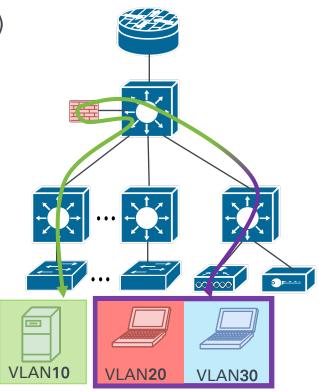
Preis (€€€)

Management

Maßnahme

VLAN

SVI


FW-Gruppe

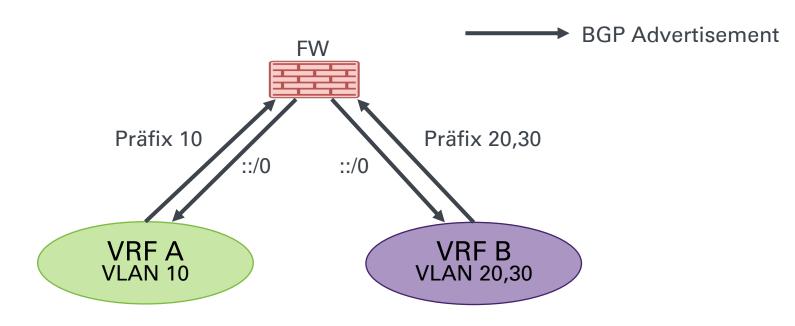
Three-Tier Architecture - (Stateful) Firewall 2

Multi-Hop PBR zur Firewall ("On-a-Stick")

Skalierbarkeit

Troubleshooting

Maßnahme


VLAN

SVI

FW-Gruppe

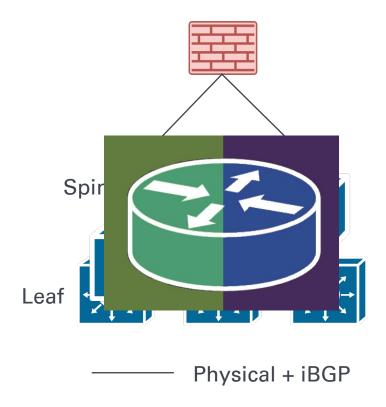
PBR(-ACL)

Three-Tier Architecture - (Stateful) Firewall 3

Netzwerkvirtualisierung

VXLAN + Ethernet VPN

Data Plane: VXLAN


Control Plane: Ethernet VPN (EVPN)

BGP-basierter <u>L2VPN/L3VPN</u> Service

MAC-VRF:L2VNI = 1:1

• IP-VRF:L3VNI = 1:1

Alternativ: LISP, Geneve, ...

Ethernet VPN EVPN - Layer 3 Firewall **BGP** L3VNI 20010 L3VNI 20050 Borderleaf SW2 SW1 L2VNI 10010 L2VNI 10020 L2VNI 10030 L3VNI 20050 L3VNI 20050 L3VNI 20010 Trunk ∞ VLAN10 VLAN20 VLAN30

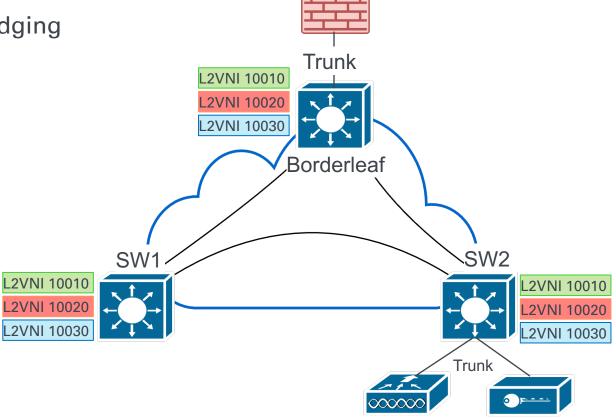
Universität Stuttgart - Technische Informations- und Kommunikationsdienste

Maßnahme

VLAN

SVI

FW-Gruppe

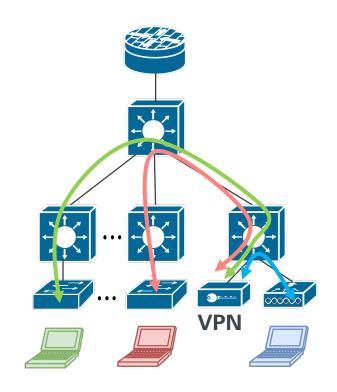

VRF

VNI

BGP

Ethernet VPN

EVPN - Bridging


VPN First

LAN/WLAN als reines Zugangsnetz

LAN/WLAN = Pipe zu VPN Gateway

Identitätsbasierte Segmentierung am VPN Gateway

IoT/Legacy-Devices: Geräte PSK / "Proxies"

Fazit

- Spannungsfeld aus:
 - Nutzererlebnis
 - Betriebsaufwand und -kompetenz
 - Kosten
- VLAN-Ansatz f
 ür kleine Netze effizient
- Overlay als saubere, flexible Lösung, erfordert Expertise

bwcampusnetz.de

Vielen Dank!

Matthias Machtolf

E-Mail matthias.machtolf@tik.uni-stuttgart.de
Telefon +49 (0) 711 685-87301
www.tik.uni-stuttgart.de

Universität Stuttgart
Technische Informations- und Kommunikationsdienste (TIK)
Allmandring 30A
70550 Stuttgart