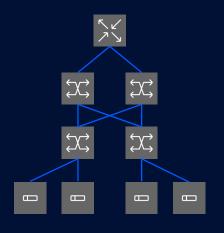


# Who am I?

- Andreas Roeder / andreas.roeder@nokia.com
- Nokia System Engineer based in Germany
- Almost 20 Years in Networking Industry including Nuage, Cisco, VMware, F5
- Endurance Sports Nerd

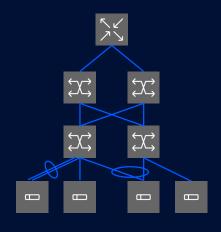



# Agenda

- How we ended where we are today?
- Problem to solve
- Introduction to UltraEthernet

# How we ended where we are today?

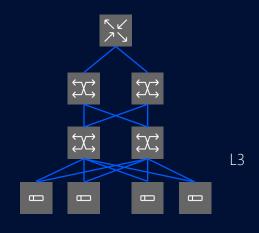
## 2005 – 2009 : Classic 3-tier (Core/Agg/Access) with STP


| Characteristics          | Pattern                                                                                        |
|--------------------------|------------------------------------------------------------------------------------------------|
| Why it emerged           | Virtualization just starting;<br>simplicity; vendor reference<br>designs                       |
| Defining characteristics | VLANs stretched across Access;<br>north-south traffic;<br>oversubscription acceptable          |
| Typical tech/protocols   | STP/RSTP/MSTP, 802.1Q trunks,<br>HSRP/VRRP, LACP                                               |
| Common pain points       | Blocking links, slow convergence<br>on failures, L2 loops risk, limited<br>east-west bandwidth |





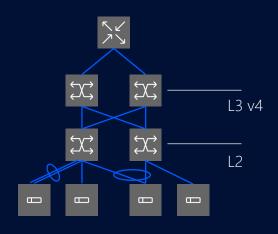
## 2009 - 2012 : L2 Fabrics & MLAG


| Characteristics          | Pattern                                                                                     |
|--------------------------|---------------------------------------------------------------------------------------------|
| Why it emerged           | Server virtualization drove eastwest; need active/active at L2                              |
| Defining characteristics | Flattened L2 domains; multi-<br>chassis link aggregation; first "no-<br>STP" fabrics        |
| Typical tech/protocols   | MLAG/vPC, TRILL / SPB, Cisco<br>FabricPath, Juniper QFabric,<br>Brocade VCS                 |
| Common pain points       | Proprietary control planes, scale ceilings for single L2 domain, troubleshooting complexity |





## 2012-2014: Leaf-Spine Clos based underlay + Early Overlays


| Characteristics          | Pattern                                                                                 |
|--------------------------|-----------------------------------------------------------------------------------------|
| Why it emerged           | Scale-out apps; need uniform latency & ECMP; L3 everywhere                              |
| Defining characteristics | Small, predictable hops; ECMP load-sharing; L2 at the server edge only                  |
| Typical tech/protocols   | L3 Clos, OSPF/IS-IS/BGP<br>underlay, early overlays<br>(VXLAN/NVGRE/STT),<br>Nicira/NSX |
| Common pain points       | Overlay control limited (flood-<br>and-learn), ops/tooling still<br>immature            |





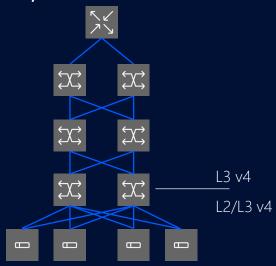
### 2014-2017: EVPN-VXLAN becomes the Standard

| Characteristics          | Pattern                                                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------|
| Why it emerged           | Need standards-based multi-<br>tenant L2/L3 over IP with good<br>control plane                       |
| Defining characteristics | Any-to-any L2 stretch with L3 gateway anywhere; ARP/ND suppression; MAC/IP learning in control plane |
| Typical tech/protocols   | VXLAN (RFC 7348), EVPN (RFC 7432), eBGP/iBGP underlay, ECMP                                          |
| Common pain points       | Interop growing pains; new control-plane skill set; multicast-free but more BGP to manage            |





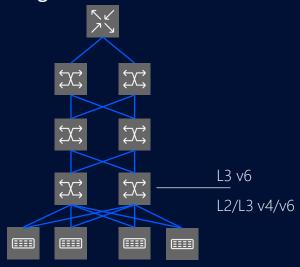
## 2016-2019: Disaggregation + Intent Automation


| Characteristics          | Pattern                                                                             |
|--------------------------|-------------------------------------------------------------------------------------|
| Why it emerged           | Cloud scale ops; vendor-agnostic choices; faster feature velocity                   |
| Defining characteristics | Whitebox/britebox, NOS choices (e.g., SONiC, Cumulus), infra as code                |
| Typical tech/protocols   | eBGP underlay, EVPN-VXLAN,<br>Ansible/Terraform,<br>gNMI/streaming telemetry        |
| Common pain points       | Toolchain sprawl; day-2 ops<br>maturity; skill gap in<br>automation/Cl for networks |





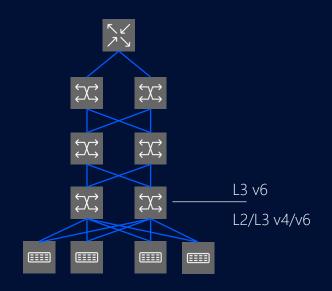
## 2018-2021: Mature EVPN fabrics | 25/100/400G | RDMA/RoCEv2


| Characteristics          | Pattern                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------|
| Why it emerged           | Microservices; HCI;<br>storage/compute convergence;<br>low-latency needs                   |
| Defining characteristics | Larger Clos stages; ToR L3 gateways; QoS/ECN; PFC to support RoCEv2                        |
| Typical tech/protocols   | EVPN-VXLAN, ECN, DCB/PFC,<br>DCQCN, ACI/Apstra "intent"                                    |
| Common pain points       | PFC issues (pause storms),<br>congestion-hotspots,<br>buffer/headroom tuning<br>complexity |



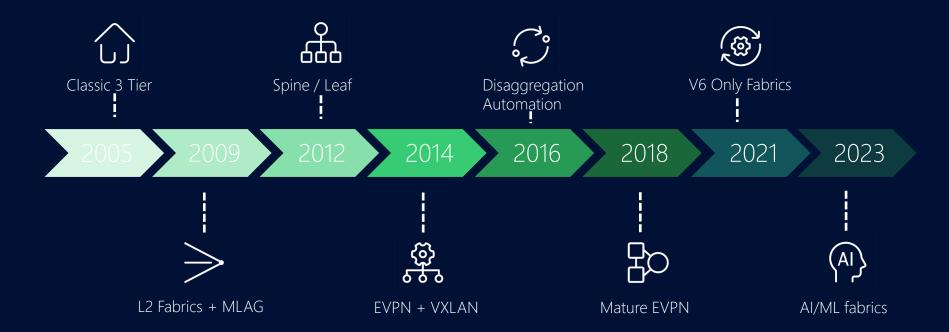


2021-2023: IPv6-only, SRv6 trials, advanced load-balancing


| Characteristics          | Pattern                                                                                           |
|--------------------------|---------------------------------------------------------------------------------------------------|
| Why it emerged           | Address scale; simpler IP; segment routing experiments                                            |
| Defining characteristics | v6 underlays, some SRv6 DC<br>designs, better hashing/flowlets                                    |
| Typical tech/protocols   | IPv6-only Clos, SRv6 (limited DC adoption), flowlet-based LB (CONGA/HULA concepts), INT/telemetry |
| Common pain points       | SRv6 hardware support variance;<br>mixed vendor maturity; ops<br>familiarity                      |

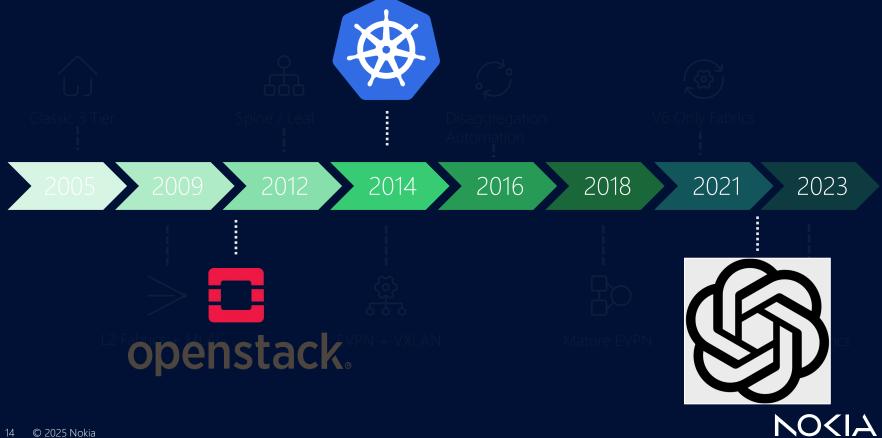




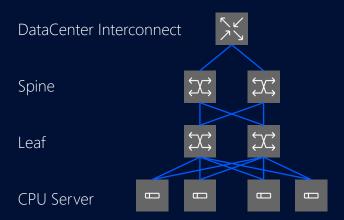

## 2023-today: AI/ML fabrics on Ethernet

| Characteristics          | Pattern                                                                                                                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Why it emerged           | GPU clusters dominate; need ultra-low tail latency & high bisection                                                                                                                        |
| Defining characteristics | Deeper Clos; adaptive routing;<br>better congestion control; fine-<br>grained QoS/telemetry; PTP for<br>sync                                                                               |
| Typical tech/protocols   | EVPN-VXLAN underlay/overlay,<br>ECN+DCQCN, selective PFC,<br>advanced ECMP/flowlets, in-band<br>telemetry, 400/800G optics;<br>emerging <b>Ultra Ethernet</b> ; vendor<br>Al fabric stacks |
| Common pain points       | Still tricky to make Ethernet<br>"Infiniband-like"; PFC hazards;<br>topology-aware scheduling and<br>failure handling at scale                                                             |






# Timeline







# Disruption



# Rise of Al Another Problem to solve...







DataCenter Interconnect

Spine

Leaf

CPU Server + GPU Server

**GPU Fabric** 

InfiniBand Switch



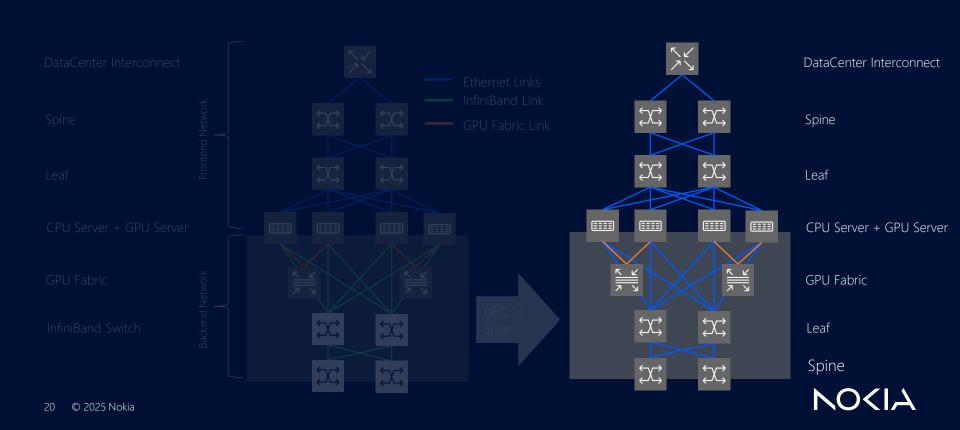
### What happened?

- With the growth of AI applications and use of GPUs in servers, the traditional data center network comprising Ethernet switches and network adapters (or NICs) used in servers has become the "frontend network"
- Deals with movement of data among modern applications that run in CPUs and storage appliances (the east-west traffic), and data to other data centers or the Internet (the north-south traffic)
- A new network called the "backend network" has evolved with the sole purpose of handling data movement between GPUs. RDMA as Baseline technology to Access Memory of GPU's
- GPUs used to process AI training and inference algorithms move data between them orders of magnitude more than CPUs have in the past
- One misbehaving element (an overburdened GPU or a congested link between a few of them) could throw the entire routine into disarray; as a result training algorithms could take way longer to complete, recommender systems could fail to do so in time annoying users, and expensive infrastructure (GPUs cost a lot, use a lot of power) could go underutilized



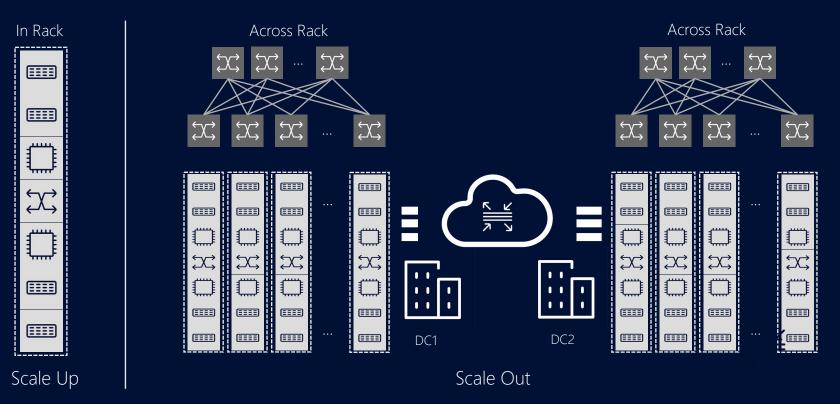
### Rise of Backend Networks

- 2 Parts of the Backend Networks
  - Proprietary GPU fabrics like NVLink and Infinity Fabric are used for GPU-to-GPU communication within the server or for smaller clusters of NVIDIA and AMD GPUs respectively. This part of the backend network is called the "scale-up" network
  - For communication between a larger set of GPUs, a complementary "scale-out" network is used, which today is serviced mostly using InfiniBand switches and host adapters used in servers for Backend Networks






# Why Ethernet for Backend Networks?


- InfiniBand is not considered the right technology given its limited scale (clusters with few thousands of GPUs) and supplier diversity (NVIDIA is the only one)
- The large Ethernet community has acknowledged deficiencies in Ethernet, mostly related to the use of RDMA and congestion management at scale.
- The Ultra Ethernet Consortium (UEC) <a href="https://ultraethernet.org">https://ultraethernet.org</a> was formed in 2023 to address these architectural and technology challenges to enable replacement of InfiniBand with Ethernet in the backend





# Introduction to UltraEthernet

# AI Scale-UP and Scale-Out Networking





## Ultra **Ethernet ≡Consortium**

**■ BROADCOM** 

Meta



**MDD** 

ARISTA

intel.





11 111 11

CISCO

Microsoft





**TOYOTA** 

VIAVI

Rivos

ORACLE



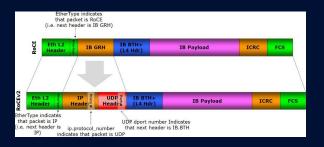
Ruijie





SAMSUNG SDS




SambaNova



## RMA and its relation to Ethernet

#### RMA Highlights

- Accelerators today communicate with RMA
- RMA is hardware delivery straight to/from memory
  - Kernel bypass, zero-copy
  - Hardware loss detection, retrans, loss recovery
- RDMA over IP (RoCEv2) is a widely deployed RMA implementation



#### Ethernet Highlights

- Broad Ecosystem
  - NIC's, Switches, Optics, Cables
  - Multi-vendor at all layers
- Rapid Innovation overall
- Tooling, Interops, Knowledge
- Overall Scaling



# What are we trying to solve with RMA / RoCE Implementation

- Lack of Multipathing in current Solution
- Message and initiator/target based communications
- Fine grained congestion control with rapid response
- Unordered and ordered packet delivery and packet spraying
- Native support for RDMA and collective operations



# **Ultra Ethernet Transport Goals**

- Multipathing RMA
- Relaxed Delivery Ordering
- Rapid Loss Recovery
- Modern congestion control for the DC Rapid Startup and Slowdown, Multipath Aware
- Run on IPv4/IPv6
- Lossy and Lossless Operation
- Ordered and Unordered Delivery
- Day-1 Security



# Overall Ultra Ethernet Specification Structure

Introduction

**UE Software Layer** 

**UE Transport Layer** 

**UE Network Layer** 

UE Link Layer

**UE Physical Layer** 

UE Compliance requirements

Source: https://ultraethernet.org/wp-content/uploads/sites/20/2025/06/UE-Specification-6.11.25.pdf



# Congestion Management Dual Congestion Control Modes

NSCC – Network Signal Congestion Control

- Reactive Server Side congestion Control method which act to things like
  - Trimmed Packets
  - ECN (Explicit Congestion Notification) marks
  - Increased network Latency

RCCC – Reciever Credit Congestion Control

- Reciever based with Focus on in-cast congestion Multiple sources simultaneously send data to a single destination
- Credit based System based on available buffer Space

Both mechanisms are used in parallel



## Al fabric choices

Our focus today is on Ethernet back-end scale-out fabrics...

#### DC integration strategy?

#### **Integrated**

one fabric for clouc services and Al workloads

#### **Separate**

- front-end fabric connects to external users and data
- back-end fabric for Al workloads

#### **Backend fabric technology?**

#### **Ethernet**

- ROCEv2 + DCQCN
- standard 400G Ethernet NICs,
- switches and ISLs

#### סמכ

- fully scheduled fabric
- standard NICs, proprietary ISLs

#### Infiniband

carryover from HPC, expensive

#### **Ultra Ethernet Consortium (UEC)**

emerging

# Topology to support cluster scale?

#### Single switch

1x 7250 IXR-18e = 1K GPUs

#### 1-tier rail-optimized

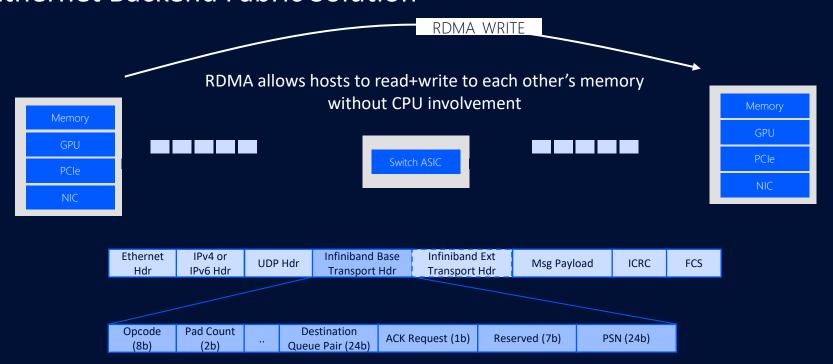
8x H5 leafs, one per rank =1K GPUs

#### 2-tier non-blocking

128x H5 leafs + 64x H5 spines = 8K GPUs

#### 3-tier non-blocking

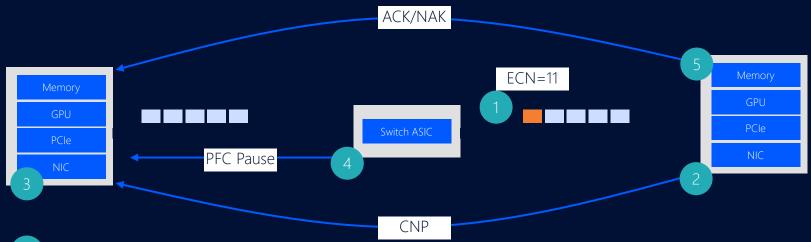
512x H5 leafs + 512x H5 spines +256x H5 super-spines = 32K GPUs Multi-tenancy design?


Storage design?

Management design?



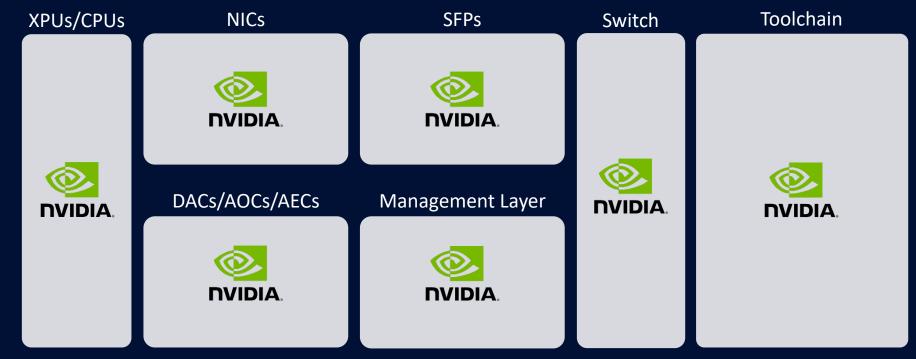



## **Ethernet Backend Fabric Solution**



ROCEv2 is a method of sending RDMA messages using UDP/IP/Ethernet encapsulation




# Ethernet Backend Fabric Solution – Congestion Control



- Leafs/spines selectively mark IP packets with ECN=11 to indicate they experienced congestion
- Receiving RDMA NIC sends ROCEv2 CNP (Congestion Notification Packet) to sending NIC
- 3 Sending RDMA NIC (running DCQCN) slows its TX rate in response to received CNPs.
- 4 If 1-3 was not sufficient and queues continue to build, leafs/spines send PFC pause frames to link neighbors
- If 1-4 was not sufficient and loss occurs, receiving RDMA NIC sends NAK and retransmission occurs



## The InfiniBand Lock-in Problem



# Ethernet's Ecosystem Advantage

XPUs/CPUs

**AMD** 

**NICs** 

**DVIDIA**. BROADCOM® SFPs

Vendor SFPs + 3<sup>rd</sup> Party SFPs

Switch

Toolchain

















**AMD** 

**DVIDIA**.

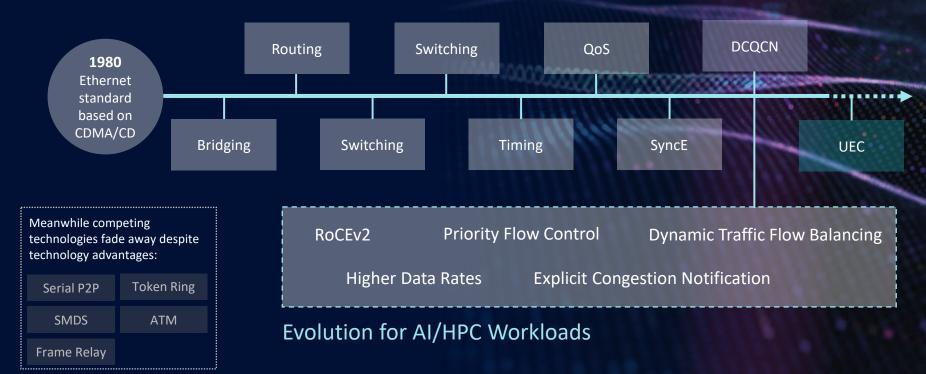
intel

DACs/AOCs/AECs

Vendor Cables + 3<sup>rd</sup> Party Cables

Source: https://ult.ethernet.org/wp-content/uploads/site

Management Layer


Vendors Platforms + Open-Source and 3<sup>rd</sup> Party **Management Tools** 

20/2025/06/UE-Specification-6.11.25.



# Ethernet has a long history of winning...

... and is evolving for AI/HPC workloads



## Conclusion

ETHERNET is here to Stay

ETHERNET will evolve (like done before)

ETHERNET will Scale

ULTRA ETHERNET is ready for AI and HPC of the Future



